My favorite iron is made up of a Weller 7400 handle with a 37UG heater and a PL-111 tip. I use a standard light dimmer mounted in a 2 outlet plus switch outlet box to control the temperature. I adjust the heat so it is just a little more than is needed to melt the solder. Surface mount parts don't need a lot of heat. So why do I have such a powerful heater? Because occasionally I want to solder wires to my boards and that can take a lot more heat. I use Weller 8001 anti-sieze to mount the tips to the heater. It makes changing tips easier.
And of course you will need solder. I like 63/37 (Sn/Pb) rosin core solder. You will need a flux with an applicator that will make temporary tacking surface mount parts easy. Chip Quik SMD291NL does the job. A rosin flux pen is also handy for coating pads on a board so they solder easier and do not become corroded. A Kester #186 pen does that job nicely.
You will also need help for times when you make mistakes. The Weller 7805 is a good solder sucker. Solder wick in several sizes (especially .025") is also very useful.
You may also need a magnifier. I use a magnifier head strap from Harbor Freight along with 3.5 diopter magnifying glasses you can pick up at any drugstore. For a bench light and general magnifier I use an E78751 magnifying light - which appears to be obsolete. This magnifying light from Harbor Freight may be a substitute. I haven't tried it.
Finally you will need a pair of tweezers for placing small parts. I have used all kinds including those for plucking eyebrows. I have been using these industrial tweezers for the last few years.
That gets you a bench set up. Not counting a conductive work space for static protection. I use black anti-static bags taped together and grounded. It is low cost and works well.
That covers your bench set up.
This video is pretty good. However I do things a little differently. I use the SMD291 flux under the chip to hold the chip in place. With this flux you can move the chip so that the pins line up with the pads. Once the pins and pads are lined up, tack the corners. And then all the rest of the pins. For added protection during soldering I like to mount the high value bypass capacitors first. This helps absorb any residual static charges while still allowing easy soldering.
Update: 24 November 2017 2156z
It occurred to me that starting novices with fine pitch surface mount parts might not be the best idea. So I designed a very simple board for testing the resistance ranges of digital meters. A board with seven precision resistors (0.1%). The first two resistors (12 ohms and 150 ohms) create a 11.11111111 ohm resistor (not counting resistor tolerances). The rest are normal decade values. which means you don't need to look for "9.000" values (which you can not get - usually) for decade dividers. The "wires" on the board add about .001 ohm to the 11.1111 ohm resistor. Which is not significant at the one part per thousand (3 1/2 digit meter) level. Especially as most of those meters can not zero out the resistance of the probe wires.
I use 805 size resistors so the board will be a little easier to solder than the 603s (inch) I normally use. Just the thing for a beginner. And you will have something you can uses when the project is done.
You can find the documentation for the project at Resistor Ladder. The cost for the 7 precision resistors is a little over a dollar total. About 15 cents each in single quantities. Quite a reduction from the days when such resistors cost around ten dollars a piece.
Update: 26 November 2017 0447z
A resistance reference is good. But for real meter testing you need voltage and current. So I designed a voltage and current source. To keep costs down there is just one voltage and one current. 1.200 volts (+/- 0.1%) and 1.200 mA (+/- 0.2%). The documentation can be found at Voltage and Current Reference 25Nov2017 - Doc.zip
Engineering is the art of making what you want from what you can get at a profit.